CS 4530: Fundamentals of Software Engineering
Module 5, Lesson 5
Testing Web Applications

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Software interacts with an environment

Tests
replace
user
interaction

Mock System-Level Components with

Capture/Replay

* Record the API requests and responses that clients

make

* Test new versions of the APl by identifying requests
that result in different responses ("breaking

changes")

Clients (created by many third
parties)

Production traffic

Production traffic

Capture/Replay Proxy for
Testing

Replay production traffic for testing

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Acceptance Tests can be formulated as
scenarios

* Acceptance tests are written to verify behavior from a user’s
perspective.

* The focus is on treating the application as a black-box

* Tests may be specified as given-when-then scenarios:

given there's a logged in user

and there's an article "bicycle"

when the user navigates to the "bicycle" article's detail page
and clicks the "add to basket" button

then the article "bicycle" should be in their shopping

basket

https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test

Deployed systems create testing challenges

* Clients believe “how it is now is right”,
* Not “how the APl intended it to be is right”
* Writing thorough test suite is even harder, less useful
* What is a “breaking change”?

e Still: vital to detect breaking changes

* Examples:
e Detailed layout of GUIs
 Side-effects of APIs, particularly under corner-cases

But how to make these human-readable
scenarios into executable tests?

e Scenarios like the one above are readable by
humans (e.g. customers)

But how to make these human-readable
scenarios into executable tests?

 Automation is a spectrum — humans can automate
tests! $ 6 +10.0

 Many of the same concerns Testing:
apply: deterministic, not flaky...

® npm ci && npm run build -w=client && npm start -w=server

* load user0, user1, user2 in separate browsers

https://www.browserstack.com/guide/test-case-vs-test-s e user0 and user1 send chats in top game
e user0 leaves

Eviter 4:igits s te Box and: chisck for it e user2 enters and chats (should see chat history)

movement of curson to next text box e user0 enters (should see chat hiStOI’y)
Check with a 16 digit card number R S s——— oy
digits in each text box. each box. A

4 text boxes to be displayed and

Check for four text boxes to accomodate the 16 only 16 digits are to be 4 text boxes are displayed and 16

e y) digits are accomodated, 4 digits in

digit credit/debit card number Check with an invalid 20 digit card number accomodated, 4 digits in each box. B . B Pass
each box. The extra 4 digits are

The user should not be able to enter

not recorded
the rest of the digits.

4 text boxes to be displayed, 13

digits are to be accomodated, 4 . .
5 4 text boxes are displayed, first 4 7

digits in first three boxes. The last

o sl

| text boxes accommodate 4 digits |

But how to make these human-readable
scenarios into executable tests?

Entire sub-specialization

Entire companies specialize in this endeavor

(https://www.digitaldreamforge.com/our-services/) within software engineering
to push automation
D#&Eﬂpﬁﬁﬁz faster/simpler/more reliable
to meet agile & CI/CD goals
We provide these services... QA Engineer Lead Responsibilities

. Plan, develop and execute product quality strategies for
Meta's products

@ - Develop test strategies for business critical projects to
ensure product correctness before launch
Functionality Testing . Manage a team of in-house and offshore testers to
e Test Plan Creation and Running conduct black box testing
e Full-Cycle Testing . Spearhead initiatives that influences engineering
* Regression Testing organizations to build a quality-driven approach
* Network Testing . Partner with engineering and infrastructure teams to

* Launch Verification Testing leverage automation for scalable solutions to prevent

But how to make these human-readable
scenarios into executable tests?

* They are not automatable are not automatable

* Lots of tools to fill the gap: I'll add links to the
lesson page

Snapshot Tests Can Detect GUI Changes

* The first time the test runs, it saves a "snapshot" of
the rendered GUI

e Subsequent runs will fail if the snapshot changes

import renderer from 'react-test- _
renderer'; Link.react-test.js

e renders correctly

import Link from '../Link';
received) .toMatchSnapshot
it ('renders correctly', () => { Snapshot name: “renders correctly 1°
const tree = renderer - Snapshot - 2

.create (<Link + Received + 2

page="http://www.facebook.com">Facebook</L
ink>) href="http://www.facebook.com"
.LoJSON () ; + href="http://www.instagram.com"

expect (tree) .toMatchSnapshot () ;
})

Facebook

+ Instagram

Product Owners can Assess Visual Snapshot
Tests

e Capture a visual snapshot of an application under a state
* If that snapshot changes, produce a visual report for manual sign-off

https://github.com/newsuk/AyeSpy

Terms worth knowing!

* Snapshot testing — doing particular actions and
storing the rendered HTML/DOM

* Visual testing — doing particular actions and
storing the rendered pixels

How to perform actions? No good answers only
tradeoffs

* Click these particular coordinates
e Search for a button with this user-visible text in it

e Search for a button with this id or user-invisible
quality

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 5, Lesson 5 Testing Web Applications
	Slide 2: Software interacts with an environment
	Slide 3: Mock System-Level Components with Capture/Replay
	Slide 4: Acceptance Tests can be formulated as scenarios
	Slide 5: Deployed systems create testing challenges
	Slide 6: But how to make these human-readable scenarios into executable tests?
	Slide 7: But how to make these human-readable scenarios into executable tests?
	Slide 8: But how to make these human-readable scenarios into executable tests?
	Slide 9: But how to make these human-readable scenarios into executable tests?
	Slide 10: Snapshot Tests Can Detect GUI Changes
	Slide 11: Product Owners can Assess Visual Snapshot Tests
	Slide 12: Terms worth knowing!

