
CC BY-SA

© 2025 Released under the CC BY-SA license

1

CS 4530: Fundamentals of Software Engineering
Module 5, Lesson 5
Testing Web Applications

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/


2

Software interacts with an environment

Mo

2

Database

The SUT
Network, Time, 
Randomness

Tests 
replace 

user 
interaction



Mock System-Level Components with 
Capture/Replay

• Record the API requests and responses that clients 
make

• Test new versions of the API by identifying requests 
that result in different responses ("breaking 
changes")

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Current version of API

Next version of API

Clients (created by many third 

parties)

Capture/Replay Proxy for 

Testing

Production traffic

Production traffic

Replay production traffic for testing

https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/


Acceptance Tests can be formulated as 
scenarios

• Acceptance tests are written to verify behavior from a user’s 
perspective.

• The focus is on treating the application as a black-box

• Tests may be specified as given-when-then scenarios:
given there's a logged in user
and there's an article "bicycle"
when the user navigates to the "bicycle" article's detail page
and clicks the "add to basket" button
then the article "bicycle" should be in their shopping
basket

https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test 

https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test


Deployed systems create testing challenges

• Clients believe “how it is now is right”,
• Not “how the API intended it to be is right”

• Writing thorough test suite is even harder, less useful

• What is a “breaking change”?

• Still: vital to detect breaking changes

• Examples:
• Detailed layout of GUIs

• Side-effects of APIs, particularly under corner-cases



But how to make these human-readable 
scenarios into executable tests?

• Scenarios like the one above are readable by 
humans (e.g. customers)



But how to make these human-readable 
scenarios into executable tests?

• Automation is a spectrum — humans can automate 
tests! 
• Many of the same concerns 

apply: deterministic, not flaky…

7

https://www.browserstack.com/guide/test-case-vs-test-script



But how to make these human-readable 
scenarios into executable tests?

Entire sub-specialization 
within software engineering 
to push automation 
faster/simpler/more reliable 
to meet agile & CI/CD goals

8

Entire companies specialize in this endeavor
(https://www.digitaldreamforge.com/our-services/)



But how to make these human-readable 
scenarios into executable tests?

• They are not automatable are not automatable 

• Lots of tools to fill the gap: I’ll add links to the 
lesson page

9



Snapshot Tests Can Detect GUI Changes

• The first time the test runs, it saves a "snapshot" of 
the rendered GUI

• Subsequent runs will fail if the snapshot changes

import renderer from 'react-test-

renderer';

import Link from '../Link';

it('renders correctly', () => {

const tree = renderer

.create(<Link 

page="http://www.facebook.com">Facebook</L

ink>)

.toJSON();

expect(tree).toMatchSnapshot();

});



Product Owners can Assess Visual Snapshot 
Tests

• Capture a visual snapshot of an application under a state

• If that snapshot changes, produce a visual report for manual sign-off

https://github.com/newsuk/AyeSpy

https://github.com/newsuk/AyeSpy


Terms worth knowing!

• Snapshot testing — doing particular actions and 
storing the rendered HTML/DOM

• Visual testing — doing particular actions and 
storing the rendered pixels

How to perform actions? No good answers only 
tradeoffs

• Click these particular coordinates

• Search for a button with this user-visible text in it

• Search for a button with this id or user-invisible 
quality

12


	Slide 1: CS 4530: Fundamentals of Software Engineering Module 5, Lesson 5 Testing Web Applications
	Slide 2: Software interacts with an environment
	Slide 3: Mock System-Level Components with Capture/Replay
	Slide 4: Acceptance Tests can be formulated as scenarios
	Slide 5: Deployed systems create testing challenges
	Slide 6: But how to make these human-readable scenarios into executable tests?
	Slide 7: But how to make these human-readable scenarios into executable tests?
	Slide 8: But how to make these human-readable scenarios into executable tests?
	Slide 9: But how to make these human-readable scenarios into executable tests?
	Slide 10: Snapshot Tests Can Detect GUI Changes
	Slide 11: Product Owners can Assess Visual Snapshot Tests
	Slide 12: Terms worth knowing!

